Duchet-type theorems for powers of HHD-free graphs

نویسندگان

  • Andreas Brandstädt
  • Van Bang Le
  • Thomas Szymczak
چکیده

Using the idea due to P. DUCHET in proving his well–known theorem on powers of chordal graphs, we shall describe some theorems of DUCHET–type for powers of graphs that have no long induced cycles. In particular, our DUCHET–type theorem for HHD–free graphs improves a recent result due to DRAGAN, NICOLAI, BRANDSTÄDT saying that odd powers of HHD–free graphs are also HHD–free.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bipartite Powers of k-chordal Graphs

Let k be an integer and k ≥ 3. A graph G is k-chordal if G does not have an induced cycle of length greater than k. From the definition it is clear that 3-chordal graphs are precisely the class of chordal graphs. Duchet proved that, for every positive integer m, if G is chordal then so is G. Brandstädt et al. in [Andreas Brandstädt, Van Bang Le, and Thomas Szymczak. Duchet-type theorems for pow...

متن کامل

Convex sets in graphs, II. Minimal path convexity

A set K of vertices in a connected graph is M-convex if and only if for every pair of vertices in K, all vertices of all chordless paths joining them also lie in K. Carathtodory, Helly and Radon type theorems are proved for M-convex sets. The Caratheodory number is 1 for complete graphs and 2 for other graphs, The Helly number equals the size of a maximum clique. The Radon number is one more th...

متن کامل

Convexity and HHD-Free Graphs

It is well known that chordal graphs can be characterized via m-convexity. In this paper we introduce the notion of m-convexity (a relaxation of m-convexity) which is closely related to semisimplicial orderings of graphs. We present new characterizations of HHD-free graphs via m -convexity and obtain some results known from [B. Jamison and S. Olariu, Adv. Appl. Math., 9 (1988), pp. 364–376] as ...

متن کامل

An O ( nm )-Time Certifying Algorithm for Recognizing HHD-Free Graphs

In this paper, we consider the recognition problem on a class of perfectly orderable graphs, namely, the HHD-free graphs; such graphs do not contain any induced subgraph isomorphic to a house, a hole, or a domino. We prove properties of the HHD-free graphs which enable us to present an O(n m)-time and O(n + m)-space algorithm for determining whether a graph on n vertices and m edges is HHD-free...

متن کامل

Algorithms for the Treewidth and Minimum Fill-in of HHD-Free Graphs

K e y w o r d s : graphs, algori thms, HHD-free graphs, t reewidth, min imum fill-in. MSC: 68R10. 1 I n t r o d u c t i o n A graph is HHD-free if it does not contain a house (i.e., the complement of Ps), a hole (Ck for k _> 5) or a domino (see Figure 1). Fig. 1. 'House' (left), 'hole' (middle) and 'domino' (right) * kloks@math, utwente, nl

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 177  شماره 

صفحات  -

تاریخ انتشار 1997